698 research outputs found

    OT 060420: A Seemingly Optical Transient Recorded by All-Sky Cameras

    Get PDF
    We report on a ~5th magnitude flash detected for approximately 10 minutes by two CONCAM all-sky cameras located in Cerro Pachon - Chile and La Palma - Spain. A third all-sky camera, located in Cerro Paranal - Chile did not detect the flash, and therefore the authors of this paper suggest that the flash was a series of cosmic-ray hits, meteors, or satellite glints. Another proposed hypothesis is that the flash was an astronomical transient with variable luminosity. In this paper we discuss bright optical transient detection using fish-eye all-sky monitors, analyze the apparently false-positive optical transient, and propose possible causes to false optical transient detection in all-sky cameras.Comment: 7 figures, 3 tables, accepted PAS

    Paradoxical popups: Why are they hard to catch?

    Full text link
    Even professional baseball players occasionally find it difficult to gracefully approach seemingly routine pop-ups. This paper describes a set of towering pop-ups with trajectories that exhibit cusps and loops near the apex. For a normal fly ball, the horizontal velocity is continuously decreasing due to drag caused by air resistance. But for pop-ups, the Magnus force (the force due to the ball spinning in a moving airflow) is larger than the drag force. In these cases the horizontal velocity decreases in the beginning, like a normal fly ball, but after the apex, the Magnus force accelerates the horizontal motion. We refer to this class of pop-ups as paradoxical because they appear to misinform the typically robust optical control strategies used by fielders and lead to systematic vacillation in running paths, especially when a trajectory terminates near the fielder. In short, some of the dancing around when infielders pursue pop-ups can be well explained as a combination of bizarre trajectories and misguidance by the normally reliable optical control strategy, rather than apparent fielder error. Former major league infielders confirm that our model agrees with their experiences.Comment: 28 pages, 10 figures, sumitted to American Journal of Physic

    Combined application of nitrogen and phosphorus to enhance nitrogen use efficiency and close the wheat yield gap on varying soils in semi‐arid conditions

    Get PDF
    A primary driver of the wheat yield gap in Australia and globally is the supply of nitrogen (N) and options to increase N use efficiency (NUE) are fundamental to closure of the yield gap. Co‐application of N with phosphorus (P) is suggested as an avenue to increase fertiliser NUE, and inputs of N and P fertiliser are key variable costs in low rainfall cereal crops. Within field variability in the response to nutrients due to soil and season offers a further opportunity to refine inputs for increased efficiency. The response of wheat to N fertiliser input (0, 10, 20, 40 and 80 kg N ha‐1) under four levels of P fertiliser (0, 5, 10 and 20 kg P ha−1) was measured on three key low rainfall cropping soils (dune, mid‐slope and swale) across a dune‐swale system in a low rainfall semi‐arid environment in South Australia, for three successive cropping seasons. Wheat on sandy soils produced significant and linear yield and protein responses across all three seasons, while wheat on a clay loam only produced a yield response in a high rainfall season. Responses to P fertiliser were measured on the sandy soils but more variable in nature and a consistent effect of increased P nutrition leading to increased NUE was not measured

    Break-crop effects on wheat production across soils and seasons in a semi-arid environment

    Get PDF
    In low-rainfall environments, a high frequency of cereal crops has been favoured for optimising productivity and risk. However, cereals at high intensity often lead to declining water-use efficiency and increasing inputs to cope with emergent nutritional, disease and weed problems. The value of including breaks in the cropping sequence can involve a high level of uncertainty in low-rainfall areas where non-cereal crops are more risky and profitability is largely determined by the subsequent benefit to cereal productivity. In this study, we aimed to improve understanding of the magnitude and primary source of break benefits such as nutrition, water and disease management in a low-rainfall environment where a high level of within-field soil variability can also contribute to uncertainty about the value of breaks. In on-farm field experiments near Karoonda in the South Australian Mallee, breaks were grown in 2009 or 2010 on four distinct soil types across a dune–swale catena. The effect of these breaks on subsequent cereal production was measured for up to 3 years. In addition, the effect of breaks on nutrition and water available, along with disease infection in subsequent cereal crops, was explored and actual yields were compared with nitrogen and water-limited potential yields. Consistent cumulative benefits to subsequent cereal crops of at least 1 t ha–1 after 3 years accrue from breaks grown on the different soil types. The inclusion of breaks had beneficial effects on the cycling and supply of nutrients along with some short-term impacts on infection by Rhizoctonia solani AG8 in subsequent cereals, whereas there were no conclusive effects of breaks on the supply of water to subsequent crops. This study suggests that the inclusion of both legume and brassica breaks is likely to be beneficial to subsequent cereal production where nitrogen is a factor limiting productivity in low-rainfall, semi-arid environments

    The potential determinants of young people's sense of justice: an international study

    Get PDF
    This paper uses reports from 13,000 Grade Nine pupils in five countries to examine issues such as whether they were treated fairly at school, trust their teachers and adults in wider society, are willing to sacrifice teacher attention to help others, and support the cultural integration of recent immigrants. Using such reports as ‘outcomes’ in a multi‐stage regression model, it is clear that they are largely unrelated to school‐level pupil mix variables. To some extent, these outcomes are stratified by pupil and family background in the same way for all countries. However, the largest association is with pupil‐reported experience of interactions with their teachers. Teachers appear to be a major influence on young people's sense of justice and the principles they apply in deciding whether something is fair. The paper concludes by suggesting ways in which schools and teachers could take advantage of this finding

    The diffusion of policy in contexts of practice : flexible delivery in Australian vocational education and training

    Full text link
    Significant changes have occurred over the last decade within the Australian Vocational Education and Training (VET) system. Not least amongst these has been a shift from a predominantly traditional face-to-face classroom model of programme delivery to more flexible models informed by the needs of clients. To lead this revolution, in 1991 the Australian Commonwealth and State Ministers for Training established the Flexible Delivery Working Party. A series of reports followed that sought to develop a policy framework, including a definition of flexible delivery, and its principles and characteristics. Despite these efforts, project funding and national staff development initiatives, several difficulties have been experienced in the ‘take-up’ of flexible delivery; problems that we argue are related to how the dissemination of innovative practice is conceived. Specifically, the literature and research on the diffusion of innovations points to the efficacy of informal social networks ‘in which individuals adopt the new idea as a result of talking with other individuals who have already adopted it’ (Valente, 1995, p. ix). Following a discussion of these issues, the article concludes by arguing the need for research of innovative practice transfer within VET in Australia, using qualitative case study in order to develop an in-depth and rich description of the process, and facilitate greater understanding of how it works in practice

    Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars

    Get PDF
    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, ή13C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar’s environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa
    • 

    corecore